Header Ads

Check whether the given function is continuous or not at the point (0, 0)


Check whether the given function is continuous or not at the point (0, 0).





Solution:


We know that A function f of two variables is called continuous at the point `(x_0, y_­­0)` if


`f(x_0 , y_­­0)`  is defined.


` lim_{(x,y) \to (x_0,y_0)} f(x,y)`exists.


` lim_{(x,y) \to (x_0,y_0)} f(x,y) = f(x_0,y_0)`


To determine,  if f is continuous at (0,0), we need to compare ` lim_{(x,y) \to (x_0,y_0)} f(x,y) ` to  `f(x_0,y_0)`


According to the definition of the function f, we find that


`f(0,0) = 1`


we now consider the limit ` lim_{(x,y) \to (x_0,y_0)} f(x,y)` of the function


`f(x,y) = \frac{x^2 + y^2 - x^2y^2}{x^2 + y^2}`


Let (x,y) approaches to the line x, where y=0


`f(x,y) = \frac{x^2 + 0^2 - x^20^2}{x^2 + 0^2}`


`f(x,y) = \frac{x^2 + 0 - 0}{x^2 + 0}`


`f(x,y) = \frac{x^2}{x^2}`


`f(x,y) = 1                 -  -  -  - (1)`


Let (x,y) approaches to the line y, where x=0


`f(x,y) = \frac{0^2 + y^2 - 0^2y^2}{0^2 + y^2}`


`f(x,y) = \frac{0 + y^2 - 0}{0 + y^2}`


`f(x,y) = \frac{y^2}{y^2}`


`f(x,y) = 1           -  -  -  -  - ( 2 )`


Let (x,y) approaches to the line, where y=x


`f(x,y) = \frac{x^2 + x^2 - x^2x^2}{x^2 + x^2}`


`f(x,y) = \frac{2x^2 - x^4}{2x^2}`


`f(x,y) = \frac{2x^2}{2x^2} - \frac{x^4}{2x^2}`


`f(x,y) = 1 - \frac{x^2}{2}`


By putting `f(x_0 , y_­­0) = (0,0)`


`f(x,y) = 1 - \frac{0^2}{2}`


`f(x,y) = 1           -  -  -  -  - ( 3 )`


From Equation (1),(2) and (3),


It is proved that the limit of the Above function exists and is equal to 1.


`f(x_0 , y_­­0) = 1`


`lim_{(x,y) \to (x_0,y_0} \right)  f(x,y) = 1`


`lim_{(x,y) \to (x_0,y_0} \right)  f(x,y) =f(x_0 , y_­­0) = 1`


Hence,


It is proved that the given function 


is continuous or not at the point (0,0)


 


No comments

Powered by Blogger.