Processing math: 100%

Header Ads

Solved the following function



        If f(x)=√x-3 then verify (fof-1)(x)=(f-1of)(x)=x 




         Answer: 

                Here f(x)=√x-3 

                Let assume f(x)=y 

                then y=√x-3 


y2=x-3 

x=y2+3 


                We know that (f-1(y)=x 


(f-1(y)=y2+3 


                By replacing y by x then
 
(f-1(x)=x2+3 

                First we solve (fof-1)(x) 

(fof-1)(x)=f(f-1(x)) 

(fof-1)(x)=f(x2+3) 

(fof-1)(x)=√(x2+3)-3

 
(fof-1)(x)=√x2 


                                           (fof-1)(x)=x                 -------(1)

                Now we solve  (f-1of)(x) 

(f-1of)(x)=f-1(f(x)) 

(f-1of)(x)=f-1(√x-3) 

(f-1of)(x)=(√x-3)2+3 

(f-1of)(x)=x-3+3 

                                        (f-1of)(x)=x       ----------(2) 

                By (1) and (2) we can prove that 

(fof-1)(x)=(f-1of)(x)=x

No comments

Powered by Blogger.