Processing math: 100%

Header Ads

Determine whether fog( x ) = gof( x ) and Find the domain of fog( x ) and gof( x )

If f(x)=|x|andg(x)=√xx

  1. Determine whether fog(x)=gof(x)
  2. Find the domain of fog(x)andgof(x)





Solution:

  • Determine whether fog(x)=gof(x)

                Here

f(x)=|x|andg(x)=√xx

                First, we find 

fog(x)=?

fog(x)=f(g(x))

fog(x)=f(√xx)

fog(x)=|√xx|

fog(x)=|√x√x2|

fog(x)=|√x√x√x|

fog(x)=|1√x|    - - - - - -(1)

                Now, we find 

gof(x)=?

gof(x)=g(f(x))

gof(x)=g(|x|)

gof(x)=√|x||x|

gof(x)=√|x|√|x|.√|x| 

gof(x)=1√|x|   -----------(2)


                By (1) and (2) , we can prove that

fog(x)≠gof(x)


  • Find the domain of \(fog\left( x \right)\;and\;gof\left( x \right)

               Domain of fog(x)=(0,∞)

               Domain of gof(x)=(-∞,0)U(0,∞)



No comments

Powered by Blogger.