Header Ads

Determine whether fog( x ) = gof( x ) and Find the domain of fog( x ) and gof( x )

If `f\left( x ) = | x | and g( x ) = \frac{\sqrt x }{x}`

  1. Determine whether `fog( x ) = gof( x )`
  2. Find the domain of `fog( x ) and gof( x )`





Solution:

  • Determine whether `fog( x ) = gof( x )`

                Here

`f( x ) = | x | and g( x ) = \frac{\sqrt x }{x}`

                First, we find 

`fog(x) = ?`

`fog(x) = f(g(x))`

`fog(x) = f(\frac{\sqrt x }{x})`

`fog(x) = | \frac{\sqrt x }{x} |`

`fog(x) = | \frac{\sqrt x }{\sqrt {x^2}}|`

`fog(x) = |\frac{\sqrt x}{\sqrt x \sqrt x }|`

`fog(x) = |\frac{1}{\sqrt x }|       -  -  -  -  -  - (1)`

                Now, we find 

`gof(x) = ?`

`gof(x) = g(f(x))`

`gof(x) = g(|x|)`

`gof(x) = \frac{\sqrt |x| }{|x|}`

`gof(x) = \frac{\sqrt |x| }{\sqrt |x| .\sqrt |x| }` 

`gof(x) = \frac{1}{\sqrt|x|}      -----------(2)`


                By (1) and (2) , we can prove that

`fog(x) \ne gof(x)`


  • Find the domain of \(fog\left( x \right)\;and\;gof\left( x \right)

               Domain of `fog(x) = (0,\infty )`

               Domain of `gof(x) = ( - \infty ,0)U(0,\infty )`



No comments

Powered by Blogger.