Determine whether fog( x ) = gof( x ) and Find the domain of fog( x ) and gof( x )
If f(x)=|x|andg(x)=√xx
- Determine whether fog(x)=gof(x)
- Find the domain of fog(x)andgof(x)
Solution:
- Determine whether fog(x)=gof(x)
Here
f(x)=|x|andg(x)=√xx
First, we find
fog(x)=?
fog(x)=f(g(x))
fog(x)=f(√xx)
fog(x)=|√xx|
fog(x)=|√x√x2|
fog(x)=|√x√x√x|
fog(x)=|1√x| - - - - - -(1)
Now, we find
gof(x)=?
gof(x)=g(f(x))
gof(x)=g(|x|)
gof(x)=√|x||x|
gof(x)=√|x|√|x|.√|x|
gof(x)=1√|x| -----------(2)
By (1) and (2) , we can prove that
fog(x)≠gof(x)
- Find the domain of \(fog\left( x \right)\;and\;gof\left( x \right)
Domain of fog(x)=(0,∞)
Domain of gof(x)=(-∞,0)U(0,∞)
No comments