Determine whether fog( x ) = gof( x ) and Find the domain of fog( x ) and gof( x )
If `f\left( x ) = | x | and g( x ) = \frac{\sqrt x }{x}`
- Determine whether `fog( x ) = gof( x )`
- Find the domain of `fog( x ) and gof( x )`
Solution:
- Determine whether `fog( x ) = gof( x )`
Here
`f( x ) = | x | and g( x ) = \frac{\sqrt x }{x}`
First, we find
`fog(x) = ?`
`fog(x) = f(g(x))`
`fog(x) = f(\frac{\sqrt x }{x})`
`fog(x) = | \frac{\sqrt x }{x} |`
`fog(x) = | \frac{\sqrt x }{\sqrt {x^2}}|`
`fog(x) = |\frac{\sqrt x}{\sqrt x \sqrt x }|`
`fog(x) = |\frac{1}{\sqrt x }| - - - - - - (1)`
Now, we find
`gof(x) = ?`
`gof(x) = g(f(x))`
`gof(x) = g(|x|)`
`gof(x) = \frac{\sqrt |x| }{|x|}`
`gof(x) = \frac{\sqrt |x| }{\sqrt |x| .\sqrt |x| }`
`gof(x) = \frac{1}{\sqrt|x|} -----------(2)`
By (1) and (2) , we can prove that
`fog(x) \ne gof(x)`
- Find the domain of \(fog\left( x \right)\;and\;gof\left( x \right)
Domain of `fog(x) = (0,\infty )`
Domain of `gof(x) = ( - \infty ,0)U(0,\infty )`
No comments