Simplify by using De-Moivre’s theorem.
Question
Simplify `\left( \sqrt 3 + 3i \right)^{31}` by using De-Moivre’s theorem.
Solution:
De-Moivre’s theorem
`z = r^n\left(\cos n\theta + i\sin n\theta \right)` ------- (1)
Let
`z = \left( \sqrt 3 + 3i \right)^{31}`
`\| z| = r = \sqrt {\left( \sqrt 3 \right)^2 + \left( 3 \right)^2}`
`\ = \sqrt {3 + 9}`
`\ = \sqrt {12}`
`\arg z = \theta = \tan ^{ - 1}\left(\frac{y}{x} \right)`
`\= \tan ^{ - 1}\left(\frac{\sqrt 3 }{3} \right)`
`\= \tan ^{ - 1}\left(\frac{\sqrt 3}{\sqrt 3 \sqrt 3 } \right)`
`\= \tan ^{ - 1}\left( \frac{1}{\sqrt 3 } \right)`
`\= \frac{\pi }{6}`
Now
`\left( \sqrt 3 + 3i \right)^{31} = \sqrt {12} ^{31}\left( \cos 31\left(
\frac{\pi }{6} \right) + i\sin 31\left( \frac{\pi }{6} \right) \right)`
`\left( \sqrt 3 + 3i \right)^{31}= \sqrt {12} ^{31}\left( \cos \frac{31\pi }{6} + i\sin \frac{31\pi }{6} \right)`
`\left( \sqrt 3 + 3i \right)^{31} = \sqrt {12} ^{31}\left( cis\frac{31\pi }{6} \right)`
No comments