Using the truth table, determine whether the argument form is valid or invalid
Using the truth table, determine whether the following argument form
is valid or invalid:
`\p \to \q`
`\p v r`
`\therefore r`
Solution:
p |
q |
r |
Premise |
Conclusion |
|
`\p \to \q` |
`\p v r` |
r |
|||
T |
T |
T |
T |
T |
T |
T |
T |
F |
T |
T |
F |
T |
F |
T |
F |
T |
T |
T |
F |
F |
F |
T |
F |
F |
T |
T |
T |
T |
T |
F |
T |
F |
T |
F |
F |
F |
F |
T |
T |
T |
T |
F |
F |
F |
T |
F |
F |
The following argument form is invalid because in one row both the premise are true but the conclusion is false.
No comments