Solve the given differential equation subject to the indicated initial condition. (1+x4)dy+x(1+4y2)dx=0,y(1)=0
Solve the given differential equation subject to the indicated initial condition.
(1+x4)dy+x(1+4y2)dx=0 ,y(1)=0
style="display:block; text-align:center;"
data-ad-layout="in-article"
data-ad-format="fluid"
data-ad-client="ca-pub-7200085558568021"
data-ad-slot="3193586076">
Solution:
To solve the differential equation (1+x4)dy+x(1+4y2)dx=0 with the initial condition y(1)=0, we can first use separation of variables to get:
∫(1+x4)dy=-∫x(1+4y2)dx
Integrating both sides with respect to their respective variables gives:
y(1+x4)=-(14)x2(1+4y2)+C
Solving for y gives:
y=-(14)(x2)(1+4y2)+Câ‹…(1+x4)-1
Now we can use the initial condition to find the value of C:
y(1)=-(14)(12)(1+4y2)+Câ‹…(1+14)-1=0
C=1
style="display:block"
data-ad-format="autorelaxed"
data-ad-client="ca-pub-7200085558568021"
data-ad-slot="6426802817">
So the general solution is:
y=-(14)(x2)(1+4y2)+(1+x4)-1
And the solution to the differential equation subject to the initial condition is:
y=-(14)(x2)(1+4y2)+(1+x4)-1
No comments