Processing math: 100%

Header Ads

Solve the given differential equation subject to the indicated initial condition. (1+x4)dy+x(1+4y2)dx=0,y(1)=0

Solve the given differential equation subject to the indicated initial condition. 

(1+x4)dy+x(1+4y2)dx=0 ,y(1)=0






style="display:block; text-align:center;"
data-ad-layout="in-article"
data-ad-format="fluid"
data-ad-client="ca-pub-7200085558568021"
data-ad-slot="3193586076">









Solution:

To solve the differential equation (1+x4)dy+x(1+4y2)dx=0 with the initial condition y(1)=0, we can first use separation of variables to get:


∫(1+x4)dy=-∫x(1+4y2)dx


Integrating both sides with respect to their respective variables gives:


y(1+x4)=-(14)x2(1+4y2)+C


Solving for y gives:


y=-(14)(x2)(1+4y2)+Câ‹…(1+x4)-1


Now we can use the initial condition to find the value of C:


y(1)=-(14)(12)(1+4y2)+Câ‹…(1+14)-1=0


C=1





style="display:block"
data-ad-format="autorelaxed"
data-ad-client="ca-pub-7200085558568021"
data-ad-slot="6426802817">



So the general solution is:


y=-(14)(x2)(1+4y2)+(1+x4)-1


And the solution to the differential equation subject to the initial condition is:


y=-(14)(x2)(1+4y2)+(1+x4)-1

No comments

Powered by Blogger.