If `\vec A = xz^2\hat i + 2xy\hat j + 3xz\hat k` Then find `\nabla \times \vec A(or\,curl\,\vec A)` at the point (1, 2, 1)
If `\vec A = xz^2\hat i + 2xy\hat j + 3xz\hat k`
Then find `\nabla \times \vec A(or\,curl\,\vec A)` at the point (1, 2, 1)
Solution:
We know that
`\vec A = xz^2\hat i + 2xy\hat j + 3xz\hat k`
Than
`\nabla \times \vec A = (0)\hat i - (3z - 2xz)\hat j + (2y - 0)\hat k`
Now, we calculate the values of `\nabla \times \vec A` at (1,2,1)
`\nabla \times \vec A = (0)\hat i - (3(1) - 2(1)(1))\hat j + (2(2) - 0)\hat k`
`\nabla \times \vec A = (0)\hat i - (3 - 2)\hat j + (4 - 0)\hat k`
`\nabla \times \vec A = (0)\hat i - (1)\hat j + (4)\hat k`
`\nabla \times \vec A = -\hat j + 4\hat k`
No comments