Processing math: 100%

Header Ads

Determine the value(s) of h and k such that the given system has no solution, a unique solution, many solutions.


Determine the value(s) of h and k such that the given system 
x+5y-4z=3,
3x+12y-12z= -3,
2x+7y+hz=k
has 
1. no solution,
2. a unique solution,
3. many solutions.





Answer:

        Given system

x+5y-4z=3

3x+12y-12z= -3

2x+7y+hz=k

        Now, in the matrix form

        let   

        So,

AX=B

        Now, in the form of Augmented matric


        As

C=[A:B]

        Now, their consistent matrices are

        Now, discuss the given conditions:

        i. NO SOLUTION

            If h= -8andk≠ -6

            then the[R(A)<R(B), there will be no solution.

            For that R(A)=2 and R(B)=3.

        ii. UNIQUE SOLUTION

            If h≠ -8andk≠ -6

            then the R(A) = R(B) = 3 = no. of unknown, there will be unique solutions.

        For that R(A)=3 and R(B)=3.

        iii. MANY SOLUTION

            If h= -8andk= -6 

            then the R(A) = R(B) = 2 < no. of unknown, there will be many solutions.

            Like that R(A)=2 and R(B)=2.






No comments

Powered by Blogger.