Find the Jacobian
Find the Jacobian `\frac{x,y,z}{u_1,u_2,u_3}`
I) Parabolic cylindrical coordinates `x = \frac{1}{2}\left( u^2 - v^2 \right), y = uv, z = z`
where `- \infty < u < \infty , v \ge 0, - \infty < z < \infty`
II) Elliptic Cylindrical coordinates: `x = acoshu cosv, y = asinhu sinv, z = z`
Where `u \ge 0,0 \le v < 2\pi , ; , - \infty < z < \infty`
III) Prolate spheroidal coordinates:
`x = asinh\alpha sin\beta cos\gamma`
`\y = asinh\alpha sin\beta sin\gamma`
`\z = acosh\alpha cos\beta `
Where `\alpha \ge 0, 0 \le \beta \le \pi`
`0 \le \gamma <
2\pi`.
Solution:
I) Parabolic cylindrical coordinates `x = \frac{1}{2}\left( u^2 - v^2 \right), y = uv, z = z`
where `- \infty < u < \infty , v \ge 0, - \infty < z < \infty`
II) Elliptic Cylindrical coordinates: `x = acoshu cosv, y = asinhu sinv, z = z`
Where `u \ge 0,0 \le v < 2\pi , ; , - \infty < z < \infty`
III) Prolate spheroidal coordinates:
`\y = asinh\alpha sin\beta sin\gamma`
`\z =
acosh\alpha cos\beta ` Where `\alpha \ge 0, 0 \le \beta \le \pi`
`0 \le
\gamma < 2\pi`.
No comments