Find the Jacobian `\frac{x,y,z}{u_1,u_2,u_3}` | Query Point Official
Find the Jacobian `\frac{x,y,z}{u_1,u_2,u_3}`
Find the Jacobian `\frac{x,y,z}{u_1,u_2,u_3}`
I) Parabolic cylindrical coordinates `x = \frac{1}{2}\left( u^2 - v^2 \right), y = uv, z = z`
where `- \infty < u < \infty , v \ge 0, - \infty < z < \infty`
II) Elliptic Cylindrical coordinates: `x = acoshu cosv, y = asinhu sinv, z = z`
Where `u \ge 0,0 \le v < 2\pi , ; , - \infty < z < \infty`
III) Prolate spheroidal coordinates:
`x = asinh\alpha sin\beta cos\gamma`
`\y = asinh\alpha sin\beta sin\gamma`
`\z = acosh\alpha cos\beta `
Where `\alpha \ge 0, 0 \le \beta \le \pi`
`0 \le \gamma <
2\pi`.
Solution:
Coordinate Systems and Jacobian Transformation
I) Parabolic Cylindrical Coordinates
`x = \frac{1}{2}(u^2 - v^2), y = uv, z = z`
Where `-∞ < u < ∞, v ≥ 0, -∞ < z < ∞`
II) Elliptic Cylindrical Coordinates
`x = a cosh(u) cos(v), y = a sinh(u) sin(v), z = z`
Where `u ≥ 0, 0 ≤ v < 2Ï€, -∞ < z < ∞`
III) Prolate Spheroidal Coordinates
`x = a sinh(α) sin(β) cos(γ)`
`y = a sinh(α) sin(β) sin(γ)`
`z = a cosh(α) cos(β)`
Where `α ≥ 0, 0 ≤ β ≤ Ï€, 0 ≤ γ < 2Ï€`
Summary
- Jacobian is key in transforming volume elements between coordinate systems.
- Always construct the partial derivatives matrix correctly.
- Use absolute value of determinant for volume scaling in integrals.
FAQ
What is a Jacobian?
The determinant of the matrix of first-order partial derivatives; describes how a transformation scales areas or volumes.
When to use it?
In multiple integrals, coordinate transformations, and physics problems involving change of variables.
Can I calculate Jacobian in 3D coordinates?
Yes, by using `(x, y, z)` with respect to `(u, v, w)` or other transformed variables.
Related Topics
See Mathematics Notes & MCQs for more problems on calculus and multiple integrals.
No comments