Header Ads

Find the Jacobian

 


Find the Jacobian `\frac{x,y,z}{u_1,u_2,u_3}`

I)                    Parabolic cylindrical coordinates `x = \frac{1}{2}\left( u^2 - v^2 \right), y = uv, z = z`

 where `- \infty  < u < \infty , v \ge 0,  - \infty  < z < \infty` 

II)              Elliptic Cylindrical coordinates:    `x = acoshu cosv, y = asinhu sinv, z = z`

Where `u \ge 0,0 \le v < 2\pi ,  ;    , - \infty  < z < \infty`

III)           Prolate spheroidal coordinates:
            `x = asinh\alpha sin\beta cos\gamma`
            `\y = asinh\alpha sin\beta sin\gamma`
            `\z = acosh\alpha cos\beta ` 

Where         `\alpha  \ge 0, 0 \le \beta  \le \pi`
            `0 \le \gamma  < 2\pi`.





Solution:

I)                    Parabolic cylindrical coordinates `x = \frac{1}{2}\left( u^2 - v^2 \right), y = uv, z = z`

 where `- \infty  < u < \infty , v \ge 0,  - \infty  < z < \infty` 



II)              Elliptic Cylindrical coordinates:    `x = acoshu cosv, y = asinhu sinv, z = z`

Where `u \ge 0,0 \le v < 2\pi ,  ;    , - \infty  < z < \infty`




III)           Prolate spheroidal coordinates:
            `x = asinh\alpha sin\beta cos\gamma`
            `\y = asinh\alpha sin\beta sin\gamma`
            `\z = acosh\alpha cos\beta ` Where `\alpha  \ge 0, 0 \le \beta  \le \pi`
            `0 \le \gamma  < 2\pi`.






No comments

Powered by Blogger.